Lightning-fast in-memory vector database with automatic OpenAI embeddings. Build semantic search, recommendations, and AI features in minutes.
npm install neuradb import { NeuraDB } from 'neuradb' const db = new NeuraDB() await db.addDocument({ content: "AI will transform software", metadata: { category: "tech" } }) const results = await db.search("artificial intelligence")
Everything you need to integrate NeuraDB into your application
Automatic OpenAI embeddings with multiple model support
Lightweight library with no external dependencies
Optimized in-memory operations for fast retrieval
Full TypeScript support with comprehensive types
import { NeuraDB } from 'neuradb' // Initialize database const db = new NeuraDB() // Add documents await db.addDocument({ id: 'doc1', content: 'Machine learning transforms data analysis', metadata: { category: 'AI', difficulty: 'intermediate' } }) // Search with natural language const results = await db.search('artificial intelligence', { limit: 5, threshold: 0.7, similarityMethod: 'cosine' })
import { NeuraDB } from 'neuradb' import OpenAI from 'openai' const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY }) const db = new NeuraDB({ openai, embeddingModel: 'text-embedding-3-small', defaultBatchSize: 100 }) // Batch add with automatic embeddings await db.addDocuments(documents, { createEmbedding: true, batchSize: 50, onProgress: (processed, total) => { console.log(`Progress: ${processed}/${total}`) } })
Measures the cosine of the angle between vectors. Best for text similarity.
Measures straight-line distance between points. Good for numerical data.
Measures vector alignment. Useful for recommendation systems.